Введение. Основные этапы развития иммунологии. Этапы формирования иммунологии Классификация по имунному реагированию

16.01.2024 Новости

– определяется расстояние от точки эталона до конкретных значений показателей оцениваемых объектов.

В этом методе показатель комплексной оценки учитывает не только абсолютные значения сравниваемых частных показателей, но и их близость к наилучшим значениям.

Для расчета величины показателя комплексной оценки предприятия предлагается следующая математическая аналогия.

Каждое предприятие рассматривается как точка в n-мерном Эвклидовом пространстве; координаты точки - величины показателей, по которым осуществляется сравнение. Вводится понятие эталона – предприятия, у которого все показатели имеют наилучшие значения среди данной совокупности предприятий. В качестве эталона также можно принять условный объект, у которого все показатели соответствуют рекомендуемым или нормативным значениям. Чем ближе предприятие к показателям эталона, тем меньше его расстояние до точки-эталона и выше рейтинг. Наивысший рейтинг имеет предприятие с минимальным значением комплексной оценки.

Для каждого анализируемого предприятия значение его рейтинговой оценки определяется по формуле

где х ij – координаты точек матрицы – стандартизированные показатели j-го предприятия, которые определяются путем соотношения фактических значений каждого показателя с эталонным по формуле

X ij = a ij: a ij max

где a ij max – эталонное значение показателя.

Необходимо обращать внимание на обоснованность расстояний между значениями показателей конкретного объекта исследования и эталона. Отдельные стороны деятельности оказывают неодинаковое влияние на финансовое состояние и эффективность производства. При таких условиях вводят весовые коэффициенты; они придают важность определенным показателям. Для получения комплексной оценки с учетом весовых коэффициентов используют формулу

где k 1 ... k n – весовые коэффициенты показателей, определяемые путем экспертных оценок.

Исходя из данной формулы, возводятся в квадрат значения координат и умножаются на соответствующие коэффициенты весомости; производится суммирование по столбцам матрицы. Полученные подради-кальные суммы располагаются в порядке убывания. В этом случае рейтинговая оценка устанавливается по максимальному удалению от начала координат, а не по минимальному отклонению от предприятия-эталона. Наивысший рейтинг имеет предприятие, у которого наибольший суммарный результат по всем показателям.

1. Результаты финансово-хозяйственной деятельности представляются в виде исходной матрицы, в которой выделяются эталонные (наилучшие) значения показателей.

2. Составляется матрица со стандартизованными коэффициентами, рассчитанными делением каждого фактического показателя на максимальный (эталонный) коэффициент. Эталонные значения показателей равны единице.

3. Составляется новая матрица, где для каждого предприятия рассчитывается расстояние от коэффициента до точки-эталона. Полученные значения суммируются по каждому предприятию.

4. Предприятия ранжируются в порядке убывания рейтинговой оценки. Наивысший рейтинг имеет предприятие с минимальным значением оценки.

ПЛАН

1. Определение понятия «иммунитет».

2. История становления иммунологии.

3. Виды и формы иммунитета.

4. Механизмы неспецифической резистентности и их характеристика.

5. Антигены как индукторы приобретенного антимикробного

иммунитета, их природа и свойства.

6. Антигены микроорганизмов и животных.

1. Определение понятия «иммунитет».

Иммунитет – это совокупность защитно-адаптационных реакций и приспособлений, направленных на сохранение постоянства внутренней среды (гомеостаза) и защиту организма от инфекционных и других генетически чужеродных для него агентов.

Иммунитет – это универсальное для всех органических форм материи, многокомпонентное и многообразное в своих механизмах и проявлениях биологическое явление.

Слово «иммунитет» произошло от латинского слова « immunitas» – невосприимчивость.

Исторически оно тесно связано с понятие невосприимчивости к возбудителям инфекционных болезней, т.к. учение об иммунитете (иммунология) – зародилось и сформировалось в конце 19 века в недрах микробиологии, благодаря исследованиям Луи Пастера, Ильи Ильича Мечникова, Пауля Эрлиха и других ученых.

Введение. Основные этапы развития иммунологии.

Иммунология – это наука о строении и функции иммунной системы организма животных, включая человека и растений, или наука о закономерностях иммунологической реактивности организмов и методах использования иммунологических явлений в диагностике терапии и профилактике инфекционных и иммунных болезней.

Иммунология возникла как часть микробиологии в результате практического применения последней для лечения инфекционных болезней. Поэтому сначала развивалась инфекционная иммунология.

С момента возникновения иммунология тесно взаимодействовала с другими науками: генетикой, физиологией, биохимией, цитологией. В конце XX века она стала самостоятельной функциональной биологической наукой.

В развитии иммунологии можно выделить несколько этапов:

Инфекционный (Л. Пастер и др.), когда началось изучение иммунитета к инфекциям.Неинфекционный , после открытия К. Ландштейнером групп крови и

феномена анафилаксии Ш. Рише и П. Портье.

Клеточно-гуморальный , который связан с открытиями, сделанными лауреатами Нобелевской премии:

И. И. Мечников – разработал клеточную теорию иммунитета (фагоцитоз), П. Эрлих–разработал гуморальную теорию иммунитета (1908 год).

Ф. Бернет и Н. Иерне – создали современную клонально-селективную теорию иммунитета (1960).

П. Медавар – открыл иммунологическую природу отторжения аллотрансплантантов (1960).

Молекулярно-генетический, характеризующийся выдающимися открытиями, которые были удостоены Нобелевской премии:

Р. Портер и Д. Эдельман – расшифровали структуру антител (1972).

Ц. Мельштейн и Г. Келер – разработали способ получения моноклональных антител на основе созданных ими гибридов (1984).

С. Тонегава – раскрыл генетические механизмы соматической рекомбинации генов иммуноглобулинов как основы формирования разнообразия антигенраспознающих рецепторов лимфоцитов (1987).

Р. Цинкернагель и П. Догерти – раскрыли роль молекул МНС (большой комплекс гистосовместимости) (1996).

Жан Доссе с сотрудниками открыли систему антигенов и лейкоцитов человека (антигенов гистосовместимости) – HLA, что позволило производить типирование тканей (1980).

В развитии иммунологии значительный вклад внесли русские ученые: И. И. Мечников (теория фагоцитоза), Н. Ф. Гамалея (вакцины и иммунитет), А. А. Богомолец (иммунитет и аллергия), В. И. Иоффе (противоинфекционный иммунитет), П. М. Косяков и Е. А. Зотиков (изосеро-логия и изоантигены), А. Д. Адо и И. С. Гущин (аллергия и аллергические болезни),

Р. В. Петров и Р. М. Халтов (иммуногенетика, взаимодействие клеток, искусственные антигены и вакцины, новые иммуномодуляторы), А. А. Воробьев (анатоксины и иммунитет при инфекциях), Б. Ф. Семенов (противоинфекционный иммунитет), Л. В. Ковальчук, Б. В.Пинечин, А. Н. Чередеев (оценка иммунного статуса), Н. В. Медуницын (вакцины и цитотоксины), В. Я. Арлон, А. А. Ярилин (гормоны и функция тимуса) и многие другие.

В Беларуси первая докторская диссертация по иммунологии «Реакции трансплантационного иммунитета in vivo и in vitro в различных иммуногенетических системах» защищена в 1974 г. Д. К. Новиковым.

Белорусские ученые вносят определенный вклад в развитие иммунологии: И. И. Генералов (абзимы и их клиническое значение), Н. Н. Войтенюк (цитокины), Э. А. Доценко (экология бронхиальная астма), В. М. Козин (иммунопатология и иммунотерапия псориаза), Д. К. Новиков (иммунодефициты и аллергия), В. И. Новикова (иммунотерапия и оценка иммунного статуса у детей), Н. А. Скепьян (аллергические заболевания), Л. П. Титов (патология системы комплемента), М. П. Потакнев (цитокины и патология), С. В. Федорович (профессиональная аллергия).

Патогенные микоплазмы и заболевания вызываемые ими.

Антропонозные бактериальные инфекции человека, поражающие органы дыхания или мочеполовой тракт.

Микоплазмы относятся к классу Mollicutes, который включает 3 порядка: Acholeplasmatales, Mycoplasmatales, Anaeroplasmatales.

Морфология: Отсутствие ригидной клеточной стенки, полиморфизм клеток, пластичность, осмотическую чувствительность, резистентность к различным агентам, подавляющим синтез клеточной стенки, в том числе к пенициллину и его производным. Грам «-», лучше окрашиваются по Романовскому-Гимзе; различают подвижные и неподвижные виды. Клеточная мембрана находится в жидкокристаллическом состоянии; включает белки, погруженные в два липидных слоя, основной компонент которых - холестерин.

Культуральные свойства. Хемоорганотрофы, основной источник энергии - глюкоза или аргинин. Растут при температуре 30С. Большинство видов - факультативные анаэробы; чрезвычайно требовательны к питательным средам и условиям культивирования. Питательные среды (экстракт говяжьего сердца, дрожжевой экстракт, пептон, ДНК, глюкоза, аргинин).

Культивируют на жидких, полужидких и плотных питательных средах.

Биохимическая активность: Низкая. Выделяют 2 группы микоплазм: 1. разлагающие с образованием кислоты глюкозу, мальтозу, маннозу, фруктозу, крахмал и гликоген; 2.окисляющие глутамат и лактат, но не ферментирующие углеводы. Все виды не гидролизуют мочевину.

Антигенная структура: Сложная, имеет видовые различия; основные АГ представлены фосфо- и гликолипидами, полисахаридами и белками; наиболее иммунногенны поверхностные АГ, включающие углеводы в составе сложных гликолипидных, липогликановых и гликопротеиновых комплексов.

Факторы патогенности: адгезины, токсины, ферменты агрессии и продукты метаболизма. Адгезины входят в состав поверхностных АГ и обуславливают адгезию на клетках хозяина. Предполагают наличие нейротоксина у некоторых штаммов М. pneumoniae, так как часто инфекции дыхательных путей сопровождают поражения нервной системы. Эндотоксины выделены у многих патогенных микоплазм. У некоторых видов встречаются гемолизины. Среди ферментов агрессии основными факторами патогенности являются фосфолипаза А и аминопептидазы, гидролизующие фосфолипиды мембраны клетки. Протеазы, вызывающие дегрануляцию клеток, в том числе и тучных, расщепление молекул AT и незаменимых аминокислот.



Эпидемиология: М. pneumoniae колонизирует слизистую оболочку респираторного тракта; M. hominis, M. genitalium u U. urealyticum - «урогенитальные микоплазмы» - обитают в урогенитальном тракте.

Источник инфекции - больной человек. Механизм передачи - аэрогенный, основной путь передачи - воздушно-капельный.

Патогенез: Проникают в организм, мигрируют через слизистые оболочки, прикрепляются к эпителию через гликопротеиновые рецепторы. Микробы не проявляют выраженного цитопатогенного действия, но вызывают нарушения свойств клеток с развитием местных воспалительных реакций.

Клиника: Респираторный микоплазмоз - в форме инфекции верхних дыхательных путей, бронхита, пневмонии. Внереспираторные проявления: гемолитическая анемия, неврологические расстройства, осложнения со стороны ССС.

Иммунитет: для респираторного и урогенитального микоплазмоза характерны случаи повторного заражения.

Микробиологическая диагностика: мазки из носоглотки, мокрота, бронхиальные смывы. При урогенитальных инфекциях исследуют мочу, соскобы с уретры, влагалища.

Для лабораторной диагностики микоплазменных инфекций используют культуральный, серологический и молекулярно-генетический методы.

При серодиагностике материалом для исследования служат мазки-отпечатки тканей, соскобы из уретры, влагалиша, в которых можно обнаружить АГ микоплазм в прямой и непрямой РИФ. Микоплазмы и уреаплазмы выявляются в виде зеленых гранул.

АГ микоплазм могут быть обнаружены также в сыворотке крови больных. Для этого используют ИФА.

Для серодиагностики респираторного микоплазмоза определяют специфические AT в парных сыворотках больного. При урогенитальных микоплазмозах в ряде случаев проводят серодиагностику, AT определяют чаше всего в РПГА и ИФА.

Лечение. Антибиотики. Этиотропная химиотерапия.

Профилактика. Неспецифическая

Основные исторические этапы развития иммунологии и аллергологии. Современные разделы иммунологии и их значение для медицины.

Иммунология изучает мех-мы и способы защиты организма от генетически чужердных веществ – АГ с целью поддержания и сохранения гомеостаза, структурной и функциональной целостности каждого орг-ма и вида вцелом. Хронологически иммунология как наука прошла 2 больших периода: пер. протоиммунологии (от античного до 80-х годов 19в.), связанный со стихийным, эмпирическим познанием защ. р-ий орг-ма, и пер. зарождения экспериментальной и теоретической иммунологии (с 80-х г. 19в. до второго десятилетия 20 в.). В течении второго пер. завершилось формирование классическ. иммунологии, кот. носила характер в основном инфекц. иммун. Можно также выделить и 3-ий период (с середины 20 в. до наших дней). В этот период развывалась молек. и клеточная иммунология, иммуногенетика. Этапы развития микробиологии: 1) Период эмпирич. познания; 2) Морфологич. период; 3)Физиологич. период; 4) Иммунолог.пер.; 5)Молек.-генетич. период. Иммунологический пер. (1-ая половина 20 в.) является началом развития иммунологии. Он связан с именами франц. ученого Л.Пастера (открыл и разработал принципы вакцинации), рос.биолога И.И. Мечникова (открыл фагоцитарную теорию, кот. явилась основой клеточной иммунологии) и немецкого врача П.Эрлиха (высказал гипотезу об АТ и развил гуморальную теорию иммунитета). Следует отметить, что еще в эмпирическом периоде было сделано одно открытие: Эдуарл Дженнер нашел способ создания невосприимчивости к возбудит. натуральной оспы чел-ка, путем прививки чел-ку вируса коровьей оспы, т.е. содержимого пустул чел-ка, больного коровьей оспой. Но только в конце 20 в.Пастер научно обосновал принципы вакцинации и способ получения выкцин. Он показал, что ослабленный тем или иным способом возбудитель холеры кур, бешенства, сиб.язвы, потерявший вирулентные патогенные св-ва, сохр. способность при введении в организм создавать специф. невосприимчивость к возбудителю. Пастер впервые получил из мозга больных бешенством собак и кроликов, подвергш. температурным воздействиям, живую аттенуированную вакцину против бешенства, использовав фиксирован.вирус бешенства; проверил профилакт. и оечебные св-ва выкцины на пациентх, укушенных бешеными жив.; создал прививочные пункты. Мечников обосновал учение о фагоцитозе и фагоцитах и доказал, что фагоцитоз наблюдается у всех животных, включая простейших, и проявляется по отношению ко всем чужеродным в-вам. Это стало началом клеточной теории иммунитета и процесса иммуногенеза в целом с учетом кл. и гуморальных факторов. В 1900г. Р.Кох открыл такую форму реагирования иммунной системы как ГЗТ, а в 1905г. Ш.Рише и Сахаров описали ГНТ. Обе эти формы реагирования легли в основу учения об аллергии. В 1950г. была откр. толерантность к АГ и иммунологическая память. Но явление, связ. с иммунологич. памятью (быстрый эффект образования АТ при повторном введении АГ), впервые обнаружил рос. врач Райский 1915г. Многочисленные исследования были посвящены изуч. лимфоцитов, их роли в иммун., взаимоотношениям между Т- и В-лимф.и фагоцитами, киллерная функция лимфоцитов. В это же время была изучена стр. иммуноглобулинов(Портер), открыт интерферон (Айзекс), интерлейкины. Иммунология в середине 20 в. оформилась как самост. наука.

Выделяют общую и частную иммунологию. К общей относятся: молекулярная, клеточная, физиология иммунитета, иммунохимия, иммуногенетика, эволюционная иммунология. К частной относ.: иммунопрофилактика, аллергология, иммуноонкология, трансплантацентарная им., им. репродукции, иммунопатология, иммунобиотехнолог., иммунофармаколог., экологическая им.,клиническая им. Каждый раздел частной иммун. играет определенную важную роль в медицине. Иммун. пронизывает буквально все профил. и клинические дисципл. и решает исключит. важные проблемы медицины, такие как снижение частоты и ликвидация инфекц.болезней, диагностика и лечение аллерг, онколог. забол., иммунопатолог. сост., пересадка органов и тк. и т.д.

/ 62
ХудшийЛучший

Иммунология возникла как часть микробиологии в результате ее практического применения для лечения инфекционных болезней, поэтому на первом этапе развивалась инфекционная иммунология.

С момента возникновения иммунология тесно взаимодействовала с другими науками: генетикой, физиологией, биохимией, цитологией. За последние 30 лет она стала обширной, самостоятельной фундаментальной биологической наукой. Медицинская иммунология практически решает большинство вопросов диагностики и лечения болезней и в этом отношении занимает центральное место в медицине.

У истоков иммунологии лежат наблюдения древних народов. В Египте и в Греции было известно, что люди не болеют чумой повторно и поэтому переболевших привлекали к уходу за больными. Несколько веков назад в Турции, на Ближнем Востоке, в Китае для профилактики оспы втирали в кожу или слизистые оболочки носа гной из подсохших оспенных гнойников. Такое инфицирование обычно вызывало заболевание оспой в легкой форме и создавало невосприимчивость к повторному заражению. Этот метод профилактики оспы получил название вариоляции. Однако позже выяснилось, что этот метод далеко не безопасен, так как иногда приводит к заболеванию оспой в тяжелой форме и к смерти.

С давних времен люди знали, что больные, перенесшие коровью оспу, не заболевают натуральной. В течение 25 лет английский врач Э. Дженнер многочисленными исследованиями проверял эти данные и пришел к заключению, что заражение коровьей оспой предупреждает заболевание натуральной оспой. В 1796 году Дженнер привил материал из оспенного гнойника женщины, зараженной коровьей оспой, восьмилетнему мальчику. Через несколько дней у мальчика повысилась температура и появились гнойники в месте введения инфекционного материала. Затем эти явления исчезли. Через 6 недель ему ввели материал пустул от больного натуральной оспой, но мальчик не заболел. Этим опытом Дженнер впервые установил возможность предупредить заболевание оспой. Метод получил широкое распространение в Европе, вследствие чего резко снизилась заболеваемость оспой.

Научно обоснованные методы профилактики инфекционных болезней были разработаны великим французским ученым Луи Пастером. В 1880 году Пастер изучал куриную холеру. В одном из опытов для заражения кур он использовал старую культуру возбудителя куриной холеры, хранившуюся длительное время при температуре 37° С. Часть зараженных кур выжила, и после повторного заражения свежей культурой куры не погибли. Пастер сделал сообщение об этом эксперименте в Парижской Академии наук и высказал предположение, что ослабленные микробы можно использовать для предупреждения инфекционных болезней. Ослабленные культуры получили название вакцины (Vacca - корова), а метод профилактики - вакцинации. В дальнейшем Пастером были получены вакцины против сибирской язвы и бешенства. Разработанные этим ученым принципы получения вакцин и методы их применения успешно используются на протяжении 100 лет для профилактики инфекционных болезней. Однако о том, как создается иммунитет, долгое время не было известно.

Развитию иммунологии как науки в значительной мере способствовали исследования И. И.Мечникова. По образованию И. И.Мечников был зоологом, работал в Одессе, затем в Италии и во Франции, в институте Пастера. Работая в Италии, он проводил эксперименты с личинками морских звезд, которым вводил шипы розы. При этом он наблюдал, что вокруг шипов скапливаются подвижные клетки, обволакивающие и захватывающие их. И. И.Мечников разработал фагоцитарную теорию иммунитета, согласно которой освобождение организма от микробов происходит при помощи фагоцитов.

Второе направление в развитии иммунологии представлял немецкий ученый П. Эрлих. Он считал, что основным защитным механизмом от инфекции являются гуморальные факторы сыворотки крови - антитела. К концу XIX века выяснилось, что эти две точки зрения не исключают, а взаимно дополняют друг друга. В 1908 году за развитие учения об иммунитете И. И.Мечников и П. Эрлих были удостоены Нобелевской премии.

Последние два десятилетия XIX века ознаменовались выдающимися открытиями в области медицинской микробиологии и иммунологии. Были получены антитоксические противостолбнячные и противодифтерийные сыворотки путем иммунизации кроликов дифтерийным и столбнячным токсином. Так, впервые в медицинской практике, появилось эффективное средство для лечения и профилактики дифтерии и столбняка. В 1902 году за это открытие Беринг был удостоен Нобелевской премии.

В 1885 году Бухнер и сотрудники установили, что в свежей сыворотке крови микробы не размножаются, то есть она обладает бактериостатическим и бактерицидным свойствами. Вещество, содержащееся в сыворотке, при ее нагревании и длительном хранении разрушалось. В дальнейшем Эрлих назвал это вещество комплементом.

Бельгийский ученый Ж. Борде показал, что бактерицидные свойства сыворотки определяются не только комплементом, но и специфическими антителами.

В 1896 году Грубер и Дурхем установили, что при иммунизации животных различными микробами в сыворотке образуются антитела, которые вызывают склеивание (агглютинацию) этих микробов. Эти открытия расширили представление о механизмах антибактериальной зашиты и позволили применить реакцию агглютинации для практических целей. Уже в 1895 году Видаль применил реакцию агглютинации для диагностики брюшного тифа. Несколько позже были разработаны серологические методы диагностики туляремии, бруцеллеза, сифилиса и многих других заболеваний, которые широко применяются в клинике инфекционных болезней и в настоящее время.

В 1897 году Крауз обнаружил, что кроме агглютининов, при иммунизации животных микробами образуются и преципитины, которые соединяются не только с микробными клетками, но и с продуктами их метаболизма. В результате образуются нерастворимые иммунные комплексы, которые выпадают в осадок.

В 1899 году Эрлих и Моргенрот установили, что эритроциты адсорбируют на своей поверхности специфические антитела и при добавлении к ним комплемента лизируются. Этот факт имел важное значение для понимания механизма реакции антиген-антитело.

Начало XX века ознаменовалось открытием, превратившим иммунологию из эмпирической науки в фундаментальную, и заложившим основу развития неинфекционной иммунологии. В 1902 г. австрийский ученый К. Ландштейнер разработал метод конъюгации гаптенов с носителями. Это открыло принципиально новые возможности для исследования антигенной структуры веществ и процессов синтеза антител. Ландштейнер открыл изоантигены эритроцитов человека системы АВО и группы крови. Стало понятным, что существует неоднородность антигенной структуры разных организмов (антигенная индивидуальность), и что иммунитет - биологическое явление, которое имеет прямое отношение к эволюции.

В 1902 г. французские ученые Рише и Портье открыли явление анафилаксии, на основе которого в последующем создано учение об аллергии.

В 1923 г. Глени и Рамон обнаружили возможность превращения бактериальных экзотоксинов под влиянием формалина в нетоксичные вещества - анатоксины, обладающие антигенными свойствами. Это позволило использовать анатоксины в качестве вакцинных препаратов.

Серологические методы исследования находят применение еще в одном направлении - для классификации бактерий. Используя антипневмококковые сыворотки, Гриффит в 1928 г. разделил пневмококки на 4 типа, а Ленсфильд с помощью антисывороток против группоспецифических антигенов, классифицировала все стрептококки на 17 серологических групп. По антигенным свойствам классифицированы уже многие виды бактерий и вирусов.

Новый этап развития иммунологии начался в 1953 г. с исследований английских ученых Биллинхема, Брента, Медавара и чешского ученого Гашека по воспроизведению толерантности. Исходя из идеи, высказанной в 1949 г. Бернетом и в дальнейшем развитой в гипотезе Ерне о том, что способность различить собственные и чужеродные антигены не является врожденной, а формируется в эмбриональном и постнатальном периодах, Медавар с сотрудниками в начале шестидесятых годов получили толерантность к кожным трансплантатам у мышей. Толерантность у половозрелых мышей к кожным трансплантатам доноров возникала, если им в эмбриональном периоде вводили лимфоидные клетки доноров. Такие реципиенты, став половозрелыми, не отторгали кожные трансплантаты доноров той же генетической линии. За это открытие Бернету и Медавару в 1960 г. присуждена Нобелевская премия.

Резкий подъем интереса к иммунологии связан с созданием в 1959 г. клонально-селекционный теории иммунитета Ф. Бернетом исследователем, внесшим огромный вклад в развитие иммунологии. Согласно этой теории, система иммунитета осуществляет надзор за постоянством клеточного состава организма и уничтожением мутантных клеток. Клонально-селекционная теория Бернета явилась базой для построения новых гипотез и предположений.

В исследованиях Л. А.Зильбера и его сотрудников, выполненных в 1951-1956 гг., была создана вирусно-иммунологическая теория происхождения рака, по которой провирус, интегрированный в геном клетки, вызывает ее превращение в раковую клетку.

В 1959 г. английский ученый Р. Портер изучил молекулярную структуру антител и показал, что молекула гамма-глобулина состоит из двух легких и двух тяжелых полипептидных цепей, соединенных дисульфидными связями.

В дальнейшем была выяснена молекулярная структура антител, установлена последовательность аминокислот в легких и тяжелых цепях, иммуноглобулины разделены на классы и подклассы, получены важные данные об их физико-химических и биологических свойствах. За исследования по молекулярной структуре антител Р. Портеру и американскому ученому Д. Эдельману в 1972 г. присуждена Нобелевская премия.

Еще в 30-е годы А. Комза обнаружил, что удаление тимуса приводит к нарушению иммунитета. Однако истинное значение этого органа было выяснено после того, как в 1961 г. австралийский ученый Дж. Миллер произвел неонатальную тимэктомию у мышей, после которой развивался специфический синдром иммунологической недостаточности, в первую очередь, клеточного иммунитета. Многочисленные исследования показали, что тимус - центральный орган иммунитета. Интерес к тимусу особенно резко возрос после открытия в 70-х годах его гормонов, а также Т - и В-лимфоцитов.

В 1945-1955 гг. опубликован ряд работ, в которых было показано, что при удалении у птиц лимфоэпителиального органа, именуемого сумкой Фабрициуса, снижается способность вырабатывать антитела. Таким образом, выяснилось, что существует две части иммунной системы - тимусзависимая, отвечающая за реакции клеточного иммунитета, и зависимая от сумки Фабрициуса, влияющая на синтез антител. Дж. Миллер и английский исследователь Г. Кламан в 70-е годы впервые показали, что в иммунологических реакциях клетки этих двух систем вступают в кооперативное взаимодействие между собой. Изучение клеточных коопераций является одним из центральных направлений современной иммунологии.

В 1948 г. А. Фагреус установила, что антитела синтезируют плазматические клетки, а Дж. Гоуенс путем переноса лимфоцитов в 1959 г. доказал роль лимфоцитов в иммунном ответе.

В 1956 г. Жан Доссе с сотрудниками открыли систему антигенов гистосовместимости HLA у человека, что позволило производить типирование тканей.

Мак Деввит в 1965 г. доказал, что гены иммунологической реактивности (Ir-гены), от которых зависит способность реагировать на чужеродные антигены, принадлежат к главному комплексу гистосовместимости. В 1974 г. П. Цинкернагель и Р. Догерти показали, что антигены главного комплекса гистосовместимости являются объектом первичного иммунологического распознавания в реакциях Т-лимфоцитов на различные антигены.

Важное значение для понимания механизмов регуляции деятельности иммунокомпетентных клеток и их взаимодействий со вспомогательными клетками имело открытие в 1969 г. Д. Дюмондом лимфокинов, продуцируемых лимфоцитами, и создание Н. Ерне в 1974 г. теории иммунорегуляторной сети «идиотип-антиидиотип».

Огромное значение для развития иммунологии, наряду с полученными фундаментальными данными, имели новые методы исследований. К ним относятся методы культивирования лимфоцитов (П. Новелл), количественного определения антителообразующих клеток (Н. Ерне, А. Нордин), колониеобразующих клеток (Мак Куллоч), методы культивирования лимфоидных клеток (Т. Мейкинодан), обнаружения рецепторов на мембранах лимфоцитов. Возможности использования иммунологических методов исследований и повышение их чувствительности значительно увеличилось в связи с внедрением в практику радиоиммунологического метода. За разработку этого метода американской исследовательнице Р. Ялоу в 1978 г. присуждена Нобелевская премия.

На развитие иммунологии, генетики и общей биологии оказала важное воздействие гипотеза, высказанная в 1965 г. В. Дрейером и Дж. Беннетом, о том, что легкая цепь иммуноглобулинов кодируется не одним, а двумя разными генами. До этого общепринятой была гипотеза Ф Жакоба и Ж. Моно, согласно которой синтез каждой молекулы белка кодируется отдельным геном.

Очередным этапом развития иммунологии явилось изучение субпопуляций лимфоцитов и гормонов тимуса, оказывающих как стимулирующее, так и ингибирующее влияние на иммунный процесс.

К периоду последних двух десятилетий относится доказательство существования в костном мозге стволовых клеток, способных трансформироваться в иммунокомпетентные клетки.

Достижения иммунологии за последние 20 лет подтвердили идею Бернета о том, что иммунитет - явление гомеостатического порядка и по своей природе направлено, в первую очередь, против клеток-мутантов и аутоантигенов, появляющихся в организме, а антимикробное действие - частное проявление иммунитета. Таким образом, инфекционная иммунология, долгое время развивающаяся как одно из направлений микробиологии, явилась базой возникновения новой области научных знаний - неинфекционной иммунологии.

Главной задачей современной иммунологии является выявление биологических механизмов иммуногенеза на клеточном и молекулярном уровнях. Исследуются структура и функции лимфоидных клеток, свойства и характер физико-химических процессов, протекающих на их мембранах, в цитоплазме и органоидах. В результате этих исследований сегодня иммунология близко подошла к познанию интимных механизмов распознавания, синтеза антител, их структуры и функций. Значительные успехи достигнуты в изучении рецепторов Т-лимфоцитов, клеточных коопераций и механизмов клеточных иммунных реакций.

Развитие иммунологии привело к выделению в ней ряда самостоятельных направлений: общей иммунологии, иммунотолерантности, иммунохимии, иммуноморфологии, иммуногенетики, иммунологии опухолей, трансплантационной иммунологии, иммунологии эмбриогенеза, аутоиммунных процессов, радиоиммунной иммунологии, аллергии, иммунобиотехнологии, экологической иммунологии и др..

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГБОУ ВПО « Башкирский государственный медицинский университет»

Минздрав России

Кафедра микробиологии, вирусологии и иммунологии

Зав. кафедрой, д.м.н

Профессор З.Г. Габидуллин

По микробиологии на тему: «Этапы формирования иммунологии»

Выполнил студент 2 курса

Лечебного факультета гр. Л-306А

Афанасьев В.А.

Введение

Иммунология возникла как часть микробиологии в результате ее практического применения для лечения инфекционных болезней, поэтому на первом этапе развивалась инфекционная иммунология.

С момента возникновения иммунология тесно взаимодействовала с другими науками: генетикой, физиологией, биохимией, цитологией. За последние 30 лет она стала обширной, самостоятельной фундаментальной биологической наукой. Медицинская иммунология практически решает большинство вопросов диагностики и лечения болезней и в этом отношении занимает центральное место в медицине.

У истоков иммунологии лежат наблюдения древних народов. В Египте и в Греции было известно, что люди не болеют чумой повторно и поэтому переболевших привлекали к уходу за больными. Несколько веков назад в Турции, на Ближнем Востоке, в Китае для профилактики оспы втирали в кожу или слизистые оболочки носа гной из подсохших оспенных гнойников. Такое инфицирование обычно вызывало заболевание оспой в легкой форме и создавало невосприимчивость к повторному заражению. Этот метод профилактики оспы получил название вариоляции. Однако позже выяснилось, что этот метод далеко не безопасен, так как иногда приводит к заболеванию оспой в тяжелой форме и к смерти.

Иммунология в древности

С давних времен люди знали, что больные, перенесшие коровью оспу, не заболевают натуральной. В течение 25 лет англйский врач Э. Дженнер многочисленными исследованиями проверял эти данные и пришел к заключению, что заражение коровьей оспой предупреждает заболевание натуральной оспой. В 1796 году Дженнер привил материал из оспенного гнойника женщины, зараженной коровьей оспой, восьмилетнему мальчику. Через несколько дней у мальчика повысилась температура и появились гнойники в месте введения инфекционного материала. Затем эти явления исчезли. Через 6 недель ему ввели материал пустул от больного натуральной оспой, но мальчик не заболел. Этим опытом Дженнер впервые установил возможность предупредить заболевание оспой. Метод получил широкое распространение в Европе, вследствие чего резко снизилась заболеваемость оспой.

Основные имена в микробиологии и иммунологии

Научно обоснованные методы профилактики инфекционных болезней были разработаны великим французским ученым Луи Пастером. В 1880 году Пастер изучал куриную холеру. В одном из опытов для заражения кур он использовал старую культуру возбудителя куриной холеры, хранившуюся длительное время при температуре 37° С. Часть зараженных кур выжила, и после повторного заражения свежей культурой куры не погибли. Пастер сделал сообщение об этом эксперименте в Парижской Академии наук и высказал предположение, что ослабленные микробы можно использовать для предупреждения инфекционных болезней. Ослабленные культуры получили название вакцины (Vacca - корова), а метод профилактики - вакцинации. В дальнейшем Пастером были получены вакцины против сибирской язвы и бешенства. Разработанные этим ученым принципы получения вакцин и методы их применения успешно используются на протяжении 100 лет для профилактики инфекционных болезней. Однако о том, как создается иммунитет, долгое время не было известно.

Развитию иммунологии как науки в значительной мере способствовали исследования И. И.Мечникова. По образованию И. И.Мечников был зоологом, работал в Одессе, затем в Италии и во Франции, в институте Пастера. Работая в Италии, он проводил эксперименты с личинками морских звезд, которым вводил шипы розы. При этом он наблюдал, что вокруг шипов скапливаются подвижные клетки, обволакивающие и захватывающие их. И. И.Мечников разработал фагоцитарную теорию иммунитета, согласно которой освобождение организма от микробов происходит при помощи фагоцитов.

Второе направление в развитии иммунологии представлял немецкий ученый П. Эрлих. Он считал, что основным защитным механизмом от инфекции являются гуморальные факторы сыворотки крови - антитела. К концу XIX века выяснилось, что эти две точки зрения не исключают, а взаимно дополняют друг друга. В 1908 году за развитие учения об иммунитете И. И.Мечников и П. Эрлих были удостоены Нобелевской премии.

Последние два десятилетия XIX века ознаменовались выдающимися открытиями в области медицинской микробиологии и иммунологии. Были получены антитоксические противостолбнячные и противодифтерийные сыворотки путем иммунизации кроликов дифтерийным и столбнячным токсином. Так, впервые в медицинской практике, появилось эффективное средство для лечения и профилактики дифтерии и столбняка. В 1902 году за это открытие Беринг был удостоен Нобелевской премии.

В 1885 году Бухнер и сотрудники установили, что в свежей сыворотке крови микробы не размножаются, то есть она обладает бактериостатическим и бактерицидным свойствами. Вещество, содержащееся в сыворотке, при ее нагревании и длительном хранении разрушалось. В дальнейшем Эрлих назвал это вещество комплементом.

Бельгийский ученый Ж. Борде показал, что бактерицидные свойства сыворотки определяются не только комплементом, но и специфическими антителами.

В 1896 году Грубер и Дурхем установили, что при иммунизации животных различными микробами в сыворотке образуются антитела, которые вызывают склеивание (агглютинацию) этих микробов. Эти открытия расширили представление о механизмах антибактериальной зашиты и позволили применить реакцию агглютинации для практических целей. Уже в 1895 году Видаль применил реакцию агглютинации для диагностики брюшного тифа. Несколько позже были разработаны серологические методы диагностики туляремии, бруцеллеза, сифилиса и многих других заболеваний, которые широко применяются в клинике инфекционных болезней и в настоящее время.

В 1897 году Крауз обнаружил, что кроме агглютининов, при иммунизации животных микробами образуются и преципитины, которые соединяются не только с микробными клетками, но и с продуктами их метаболизма. В результате образуются нерастворимые иммунные комплексы, которые выпадают в осадок.

В 1899 году Эрлих и Моргенрот установили, что эритроциты адсорбируют на своей поверхности специфические антитела и при добавлении к ним комплемента лизируются. Этот факт имел важное значение для понимания механизма реакции антиген-антитело.

Иммунология как фундаментальная наука

Начало XX века ознаменовалось открытием, превратившим иммунологию из эмпирической науки в фундаментальную, и заложившим основу развития неинфекционной иммунологии. В 1902 г. австрийский ученый К. Ландштейнер разработал метод конъюгации гаптенов с носителями. Это открыло принципиально новые возможности для исследования антигенной структуры веществ и процессов синтеза антител. Ландштейнер открыл изоантигены эритроцитов человека системы АВО и группы крови. Стало понятным, что существует неоднородность антигенной структуры разных организмов (антигенная индивидуальность), и что иммунитет - биологическое явление, которое имеет прямое отношение к эволюции.

В 1902 г. французские ученые Рише и Портье открыли явление анафилаксии, на основе которого в последующем создано учение об аллергии.

В 1923 г. Глени и Рамон обнаружили возможность превращения бактериальных экзотоксинов под влиянием формалина в нетоксичные вещества - анатоксины, обладающие антигенными свойствами. Это позволило использовать анатоксины в качестве вакцинных препаратов.

Серологические методы исследования находят применение еще в одном направлении - для классификации бактерий. Используя антипневмококковые сыворотки, Гриффит в 1928 г. разделил пневмококки на 4 типа, а Ленсфильд с помощью антисывороток против группоспецифических антигенов, классифицировала все стрептококки на 17 серологических групп. По антигенным свойствам классифицированы уже многие виды бактерий и вирусов.

Новый этап развития иммунологии начался в 1953 г. с исследований английских ученых Биллинхема, Брента, Медавара и чешского ученого Гашека по воспроизведению толерантности. Исходя из идеи, высказанной в 1949 г. Бернетом и в дальнейшем развитой в гипотезе Ерне о том, что способность различить собственные и чужеродные антигены не является врожденной, а формируется в эмбриональном и постнатальном периодах, Медавар с сотрудниками в начале шестидесятых годов получили толерантность к кожным трансплантатам у мышей. Толерантность у половозрелых мышей к кожным трансплантатам доноров возникала, если им в эмбриональном периоде вводили лимфоидные клетки доноров. Такие реципиенты, став половозрелыми, не отторгали кожные трансплантаты доноров той же генетической линии. За это открытие Бернету и Медавару в 1960 г. присуждена Нобелевская премия.

Резкий подъем интереса к иммунологии связан с созданием в 1959 г. клонально-селекционный теории иммунитета Ф. Бернетом исследователем, внесшим огромный вклад в развитие иммунологии. Согласно этой теории, система иммунитета осуществляет надзор за постоянством клеточного состава организма и уничтожением мутантных клеток. Клонально-селекционная теория Бернета явилась базой для построения новых гипотез и предположений.

В исследованиях Л. А.Зильбера и его сотрудников, выполненных в 1951-1956 гг., была создана вирусно-иммунологическая теория происхождения рака, по которой провирус, интегрированный в геном клетки, вызывает ее превращение в раковую клетку.

В 1959 г. английский ученый Р. Портер изучил молекулярную структуру антител и показал, что молекула гамма-глобулина состоит из двух легких и двух тяжелых полипептидных цепей, соединенных дисульфидными связями.

В дальнейшем была выяснена молекулярная структура антител, установлена последовательность аминокислот в легких и тяжелых цепях, иммуноглобулины разделены на классы и подклассы, получены важные данные об их физико-химических и биологических свойствах. За исследования по молекулярной структуре антител Р. Портеру и американскому ученому Д. Эдельману в 1972 г. присуждена Нобелевская премия.

Еще в 30-е годы А. Комза обнаружил, что удаление тимуса приводит к нарушению иммунитета. Однако истинное значение этого органа было выяснено после того, как в 1961 г. австралийский ученый Дж. Миллер произвел неонатальную тимэктомию у мышей, после которой развивался специфический синдром иммунологической недостаточности, в первую очередь, клеточного иммунитета. Многочисленные исследования показали, что тимус - центральный орган иммунитета. Интерес к тимусу особенно резко возрос после открытия в 70-х годах его гормонов, а также Т - и В-лимфоцитов.

В 1945-1955 гг. опубликован ряд работ, в которых было показано, что при удалении у птиц лимфоэпителиального органа, именуемого сумкой Фабрициуса, снижается способность вырабатывать антитела. Таким образом, выяснилось, что существует две части иммунной системы - тимусзависимая, отвечающая за реакции клеточного иммунитета, и зависимая от сумки Фабрициуса, влияющая на синтез антител. Дж. Миллер и английский исследователь Г. Кламан в 70-е годы впервые показали, что в иммунологических реакциях клетки этих двух систем вступают в кооперативное взаимодействие между собой. Изучение клеточных коопераций является одним из центральных направлений современной иммунологии.

В 1948 г. А. Фагреус установила, что антитела синтезируют плазматические клетки, а Дж. Гоуенс путем переноса лимфоцитов в 1959 г. доказал роль лимфоцитов в иммунном ответе.

В 1956 г. Жан Доссе с сотрудниками открыли систему антигенов гистосовместимости HLA у человека, что позволило производить типирование тканей.

Мак Деввит в 1965 г. доказал, что гены иммунологической реактивности (Ir-гены), от которых зависит способность реагировать на чужеродные антигены, принадлежат к главному комплексу гистосовместимости. В 1974 г. П. Цинкернагель и Р. Догерти показали, что антигены главного комплекса гистосовместимости являются объектом первичного иммунологического распознавания в реакциях Т-лимфоцитов на различные антигены.

Важное значение для понимания механизмов регуляции деятельности иммунокомпетентных клеток и их взаимодействий со вспомогательными клетками имело открытие в 1969 г. Д. Дюмондом лимфокинов, продуцируемых лимфоцитами, и создание Н. Ерне в 1974 г. теории иммунорегуляторной сети «идиотип-антиидиотип».

Огромное значение для развития иммунологии, наряду с полученными фундаментальными данными, имели новые методы исследований. К ним относятся методы культивирования лимфоцитов (П. Новелл), количественного определения антителообразующих клеток (Н. Ерне, А. Нордин), колониеобразующих клеток (Мак Куллоч), методы культивирования лимфоидных клеток (Т. Мейкинодан), обнаружения рецепторов на мембранах лимфоцитов. Возможности использования иммунологических методов исследований и повышение их чувствительности значительно увеличилось в связи с внедрением в практику радиоиммунологического метода. За разработку этого метода американской исследовательнице Р. Ялоу в 1978 г. присуждена Нобелевская премия.

На развитие иммунологии, генетики и общей биологии оказала важное воздействие гипотеза, высказанная в 1965 г. В. Дрейером и Дж. Беннетом, о том, что легкая цепь иммуноглобулинов кодируется не одним, а двумя разными генами. До этого общепринятой была гипотеза Ф Жакоба и Ж. Моно, согласно которой синтез каждой молекулы белка кодируется отдельным геном.

Период изучения субпопуляций лимфоцитов и гормонов тимуса

Очередным этапом развития иммунологии явилось изучение субпопуляций лимфоцитов и гормонов тимуса, оказывающих как стимулирующее, так и ингибирующее влияние на иммунный процесс.

К периоду последних двух десятилетий относится доказательство существования в костном мозге стволовых клеток, способных трансформироваться в иммунокомпетентные клетки.

Достижения иммунологии за последние 20 лет подтвердили идею Бернета о том, что иммунитет - явление гомеостатического порядка и по своей природе направлено, в первую очередь, против клеток-мутантов и аутоантигенов, появляющихся в организме, а антимикробное действие - частное проявление иммунитета. Таким образом, инфекционная иммунология, долгое время развивающаяся как одно из направлений микробиологии, явилась базой возникновения новой области научных знаний - неинфекционной иммунологии.

Современная иммунология

Главной задачей современной иммунологии является выявление биологических механизмов иммуногенеза на клеточном и молекулярном уровнях. Исследуются структура и функции лимфоидных клеток, свойства и характер физико-химических процессов, протекающих на их мембранах, в цитоплазме и органоидах. В результате этих исследований сегодня иммунология близко подошла к познанию интимных механизмов распознавания, синтеза антител, их структуры и функций. Значительные успехи достигнуты в изучении рецепторов Т-лимфоцитов, клеточных коопераций и механизмов клеточных иммунных реакций.

Заключение

иммунология наука гормон микробиология

Развитие иммунологии привело к выделению в ней ряда самостоятельных направлений: общей иммунологии, иммунотолерантности, иммунохимии, иммуноморфологии, иммуногенетики, иммунологии опухолей, трансплантационной иммунологии, иммунологии эмбриогенеза, аутоиммунных процессов, радиоиммунной иммунологии, аллергии, иммунобиотехнологии, экологической иммунологии и др..

Список используемой литературы

1. Воробьев А.А. «Микробиология». Учебник для студентов мед. ВУЗов, 1994.

2. Коротяев А.И. «Медицинская микробиология, вирусологи

3. Покровский В.И. «Медицинская микробиология, иммунология, вирусология». Учебник для студентов фарм. ВУЗов, 2002.

4. Борисов Л.Б. «Медицинская микробиология, вирусология и иммунология». Учебник для студентов мед. ВУЗов, 1994.

Размещено на Allbest.ru

Подобные документы

    Задачи медицинской микробиологии, вирусологии, иммунологии и бактериологии. История развития микробиологии на мировом уровне. Изобретение микроскопа А. Левенгуком. Зарождение отечественной бактериологии и иммунологии. Работы отечественных микробиологов.

    реферат , добавлен 16.04.2017

    Микроорганизмы как важный фактор естественного отбора в человеческой популяции. Их влияние на круговорот веществ в природе, нормальное существование и патологии растений, животных, человека. Основные этапы развития микробиологии, вирусологии, иммунологии.

    реферат , добавлен 21.01.2010

    Состав и направления деятельности кафедры микробиологии и иммунологии. Принципы работы в микробиологической лаборатории. Подготовка посуды и инструментов. Техника отбора проб, посева и приготовления питательных сред. Методы идентификации микроорганизмов.

    отчет по практике , добавлен 19.10.2015

    Основные типы лимфоцитов по функциональным и морфологическим признакам как клеток иммунной системы и ее ключевого звена. Дезоксирибонуклеазы секреторных гранул лимфоцитов периферической крови пациентов с АБА. Методы выделения и изучения лимфоцитов.

    курсовая работа , добавлен 07.12.2013

    Наука, изучающая микроорганизмы, их систематику, морфологию, физиологию, наследственность и изменчивость. Методы и цели микробиологии, этапы становления. Ученые, внесшие существенный вклад в развитии микробиологии, ее практическое значение и достижения.

    презентация , добавлен 14.12.2017

    Общая характеристика B-лимфоцитов. Характеристика субпопуляций, рецепторы и маркеры В-лимфоцитов. Антигенраспознающие рецепторы B-клеток: общая характеристика. Субпопуляции В-лимфоцитов, распознание антигенов рецепторами иммуноглобулиновой природы.

    реферат , добавлен 02.10.2014

    Система иммунитета организма и ее функции. Виды клеток иммунной системы (лимфоциты, фагоциты, гранулярные лейкоциты, тучные клетки, некоторые эпителиальные и ретикулярные клетки). Селезенка как фильтр крови. Клетки-убийцы как мощное оружие иммунитета.

    презентация , добавлен 13.12.2015

    Жизненный и творческий путь Ильи Ильича Мечникова – выдающегося русского ученого-биолога. Вклад Мечникова в развитие иммунологии. Фагоцитарная теория иммунитета. Развитие идей И.И. Мечникова в России и за рубежом, их практическое воплощение в жизнь.

    реферат , добавлен 25.05.2017

    Определение понятия "гормон". Ознакомление с историей изучения эндокринных желез и гормонов, составлением их общей классификации. Рассмотрение специфических особенностей биологического действия гормонов. Описание роли рецепторов в данном процессе.

    презентация , добавлен 23.11.2015

    Возникновение микробиологии как науки. Изобретение микроскопа Левенгуком. Изучение природы брожения. Заслуги Р. Коха в изучении микроорганизмов как возбудителей заразных болезней. Исследование инфекции и иммунитета. Развитие ветеринарной микробиологии.

1980 г. – Ликвидация оспы.

Теории иммунитета.

1)

2)

3)

4)

5) Теория естественного отбора

Они превращаются в плазматические клетки, в которым вырабатываются аантитела. Антитела циркулируют в сыворотке крови и учавствуют в гуморальном иммунном ответе.

В - супрессоры – тормозят выработку антител.

Недифференц лимфоциты:

СD16 и СD56 - натуральные киллеры. Цитотоксическая функци и уничтожают чужеродные клетки.

Эозинофилы – функция киллера, копятся в очагах воспаления вызванных гельминтами. Могут стимулировать иммунный ответ.



Дендритные клетки – в лимфоидных ораганх и барьерных тканях, поглащают и переваривают антигены и активные антигенпрезентирующие клетки.

9.Формы иммунного ответа:

1) Антителообразование

2) Фагоцитоз

3) Реакция гиперчувствуительности

4) Иммунологическая память

5) Иммунологическая толерантность

10.В основе механизма межклет кооперации – рецептор-лигандное взаимодействие.

При поступлении чужеродного антигена в орагенизм человека макрофаги поглащают этот антиген и презентируют его иммунной системе. Выделенные ими цитокины включают в реакцию Т хелперы и Т киллеры. Т киллеры уничтожают часть антигенов сразу, а Т хелперы вырабатывают снова цитокины. Они включают в реакцию В лимфоциты. В лимфоциты превращаются после поступления сигнала в плазматические клетки, где происходит синтез антител, готовые антитела попадают в кровь и взаимодействуют так же с чужеродными антигенами.

Лекция №2. Неспецифический иммунитет . 15.02.2017.

11. Неспецифический иммунитет - иммунитет направлен против любого чужеродного вещества.

Неспецифический иммунитет является врожденным. Осуществляется гуморальными и клеточными механизмами. Гуморальный осуществляется такими факторами как фибронектин, лизоцим, интерфероны, система комплимента и др. Клеточный представлен фагоцитами, NK, дендритными клетками, тромбоциты и др.

Основные барьеры неспецифической резистентности:

1) механический (кожа, слизистые)

2) Физико-химический (желудок, кишечник)

3) иммунобиологические (нормальная микрофлора, лизоцим, комплимент, фагоциты, цитокины, интерферон, защитные белки).

12.Кожа и слизистые оболочки : механический барьер. Секреты потовых и сальных желез обладают бактерицидным действием – молочная, уксусная, муравьиные кислоты и ферменты.

Еще более выраженными защитными свойствами обладают слизистые носоглотки (лизоцим, IgA), конъюнктивы, слизистые дыхательных, мочеполовых путей, ЖКТ.



Защитный барьер ЖКТ.

В желудке микроорганизмы инактивируются под действием кислой среды (рН 1,5 – 2,5 и ферментов).

В кишечнике инактивация под действием lgA, трипсина, панкреатина, липазы, амилазы и желчи, ферментов и бактериоцинов нормальной микрофлоры.

Нормальная микрофлора : часть ее постоянно погибает, освобождается эндотоксин, и он является раздражителем иммунной системы.

Эндотоксин нормофлоры поддерживает иммунную систему в состоянии функциональной активность

Нормальная микрофлора занимает сайты куда могу крепится патогенные бактерии, тоесть препятствует адгезии и колонизации.

Является антогонистом патогенной микрофлоры (бактериоцины – Е.коли - колицины).

Полноценные

носитель (стабилизирующая часть)97-99%от общей массы антигена.

детерминантные группы полисахариды расположенные на поверхности носителя. определяют специфичность аг, вызывают выработку иммунного ответа. по количеству детерминантных групп определяют валентность антигена.

Различают детерминты:

линейные -первичная последовательность аминокислот пептидной цепи.

Поверхностные -расположены на поверхности молекулы антигена возникают в результате вторичной конформации.

Глубинные – проявляются при разрушение биополимера

Концевые- расположены на концах участка молекулы антигена

Центральные

24.Свойства:

Антигенность

Гетерогенность

Специфичность

Имуногенность.

Антигенность - способноссть ангтигена активировать имунную систему и взаимодействовать с факторами имунитета. Аг является специфическим раздражителем для имунокомпитетныхклеток и взаимодействует не всей поверхносотью а детерминантами.

24.Гетерогенность (чужеродность)свойство антигена обязательное условие для реализации антигенности (если он не будет чужеродным он не будет антигенным)в норме ис не восприимчива к своим биополимерам. аутоантигены-аутоиммунные заболевания.

Антигенная мимикрия это сходство антигенных детерминант например стрептококки сарколеммы миокарда или базальной мембраны почек.

По степени чужеродности:

Ксеногенные общие для организмов принадлежащих к различным родам и видам

Аллогенные –аг общие для генетически не родственных организмов но относящихся к одному виду(система крови ав0)

Изогенные аг -общие только для индентичных организмов(однояйцевые близнецы)

Имуногенность -способность создавать имунитет в основном инфекционный.

Зависит от : имунногенности аг

Природы аг

Химического состава

Растворимости.-чем более растворим тем лучше для имунного ответа.

Молекулярной массы

Оптической изометрии Пространстве,изометрии

Способ ведения вк,пк,вм

Колличества поступающего антигена

25.Специфичность -способность аг индуцировать имунный ответ к строго определенному эпиттопу.

Зависит от особенности строения поверхностной структуры детерминативных групп

Химического строения

Пространственной конфигурации хим. структуры в детер. зонах

Типы антигенной специфичности:

видовая -опеределяет специфичность одного вида друг от другу(виды мо)

групповая -обусловленаразличиями

типовая -серотипы внутри вида(умо одни серологические варианты)

индивидуальная -содержатся аг обуславливающие индивидуальную специфичность.(главный комплекс спефичности)эшля-гликопротеид.

26.Классификация антигенов:

экза и эндогенны.

По химическойструтуре:

1 класса-участвуют в имуноответе.

2 класса-уч в имунорегуляции.

По стпенеи имуносгенности полноценные и неполноценные.

По вовлечению Т лимфоцитов

Т зависимые – обязательные участие

Т хелперы. Большая часть а/г

Т независ. Не тр. участ. Т хелперы непосредственно стим. лимфоцитов

27.Классификация по имунному реагированию:

По выраженности и направленности:

Имуноген-при попадании в организм индуцирует продуктивную реакцию,выработку ат.

Толероген-не вырывает имунной реакции.

Аллерген -аг который вызывает слишком сильную имунную реакци.

Гаптен -введен ланштейнером.

Неполный антиген,не вызывает имунной реакции,низкая имунногенность,но обладает антигенностью птому может взаимодействовать уже с имеющимися с ат.чаще всего лекарственные аг.

Адъюванты -неспецифические вещества которые при совместном введении с антигеном усиливают имунный ответ на аг(эмульсия воды в масле)

28.Антигены организма человека.:

Аг эритроцита-определяют группы крови

Аг гистосовместимости-находятся на мембране всех клеток(хрусталик)

Опухользависимые антигены

Сд антигены.

29.Аг бактерий:

О-соматические липополисахариды ассоциированы с клеточной стенкой.термостабильный.

Н-аг жгутиковый белок флагелин,термолабильный

К- 3 фракции:

Ви аг протективный аг,белковый токсин,ферменты.

Аг бактерий на 2 класса:

1.содержится в мебране почти всех ядросодержащих клеток,обеспечивает унижтожение трансплантацию клеток,зараженных клеток.

2 класс участву в имунорегуляции в распознавании антигенов т хелперами.

Аг вирусов:

Ядерные (корковые)

Капсульные (оболочечные)

Суперкасидные

Ви-антигены

Эс-антигены.

Опухолевые аг-при опухоле трансформируются клеточные появляются новые антигены. их выявление использ. для ранней диагностики.

Аутоантигены собственные аг которые в норме не проявляют аг. Свойств нарушение толерантности к аутоантигенам лежит в основе аутоиммунных заболеваний

Антитела

Гамма-глобины или имуноглобулины они способны специфически взаимодействовать с антигеном и учавствовать в имунологических реакция.

Они состоят из полипетидных цепей:2 длинные и 2 короткие,поскольку 2 длинные-тяжелые.

И легкие.

Эти части вариабельны,здесь располагаются.

32.Молекула имуноглобулина состит из фап фрагмента которрый средает специфичность.

И фс фагмента котрый обеспечивает прохождение имуноглобулина через плацента и усиливает и является абсонином при фагоцитозе.

Шарнирный участок

Любой имуноглобуин имеет 2 активных центра.если ат состоит из 2 молекул имуноглобулина тоакт центров больше.

Сущетвуют непольные ат.

По колличеству активных центров оределят валентность.

Структура состоит из домена и паратопа. Светнутый в глобулу участок цепи,содержит 110 аминокислотнных участков.стабилизирован дисульфидной связью.домены соединены линейными фрагементами.

Паратон:антигенсвязывающий антивныйцентр.

Классы имуноглобулинов.

Имуноглобулиин джи-является мономером,образуется на высоте имунного ответа.проникает в центр и является противовирусн и противобактериальным фактором.активируют комплимент по классическому путию.подразделяют:1 активирует систему комплимента,вызывает образование ат и аутоантител.

2.отвечает за имунный ответ за полисахаридные антигены пневмококков,стрепкткокв.

3-активаторы имунокомплиментов,формир аутоантитела.

4 блокирует имуноглобе,имунный ответ на хроническую инфекцию

Имуноглобулин м-пентамер,способст выработке.

Имуноглобулин а А)секреторный в секрете..б)сывороточный.

Могут быть моно ди три и тетра меры

Секреторный участв в систезе секрета обеспечивает местный иммунитет,препятствует адгезии бактерий.стимулирует фагоцитоз.

Имоглобулин е-участв в анафилактических реакциях

Им д-о нем мало известно.

Показатели имуноглобулинов

Им джи-8-12 г\л

Периоды развития иммунологии.

1) Протоиммунология – эмпирические познания, не основанные на опытах. (с античного времени до 19 века).

2) Экспериментальная и теоретическая иммунология (80-е года 19 века до 20-х 20 века). Главным антигеном считался микроб и поэтому данный период считается инфекционный иммунологией.

3) Период молекулярно-генетической иммунологии. Появилось понятие тканевого антигена.

1796 г. - Дженнер – вакцина против оспы.

1881 г. - Пастер Л. – аттенуированные вакцины (холера, сибирская язва, бешенства). Разработал принцип создания любой вакцины. Считают основоположником вакцинологии и иммунологии.

1882 г. - Мечников И.И. Клеточная теория. Описал фагоциты.

1882 г. - гуморальная теория иммунитета Эрлиха. Ввели понятие антитело.

1900 г. - Ландштейнер К. Группы крови (АВ0). Опубликовал антигены эритроцитов и заговорил о том, что кровь делится на 4 группы. С этого момента появилось понятие тканевого антигена.

1902 г. - Портье П. Рише. Ш. Гиперчувствительность.

1944 г. – Медавар П. Отторжение трансплантата.

1980 г. – Ликвидация оспы.

Теории иммунитета.

1) Эрлиха. Гуморального иммунитета . Главная роль в защите принадлежит жидкостям и эти вещества в крови он назвал антителом. Он называл их боковыми цепями.

2) Мечников. Фагоцитарная (клеточная теория ). Фагоциты играют главную роль в иммунитете.

3) Клонально-селекционеая теория Бернета

· Антиген является селективным фактором (антитело вырабатывается в ответ на антиген).

· Антиген взаимодействуют с определенными рецпторами иммунокомпетентных клеток

· Каждая антителопродуцирующая клетка может синтезировато только 1 вид антител.

4) Теория прямой матрицы Полинга 1940 г. Антиген проникает в клетку продуцирующие антитело и на поверхности этой клетки происходит конструирование антител (тоесть антиген как матрица).

5) Теория естественного отбора Йерне 1955г. В организме вырабатываются различные по специфичности иммуноглобулины и среди них всегда есть тела, соответствующие проникшему антигену.